linear relationship - significado y definición. Qué es linear relationship
Diclib.com
Diccionario ChatGPT
Ingrese una palabra o frase en cualquier idioma 👆
Idioma:

Traducción y análisis de palabras por inteligencia artificial ChatGPT

En esta página puede obtener un análisis detallado de una palabra o frase, producido utilizando la mejor tecnología de inteligencia artificial hasta la fecha:

  • cómo se usa la palabra
  • frecuencia de uso
  • se utiliza con más frecuencia en el habla oral o escrita
  • opciones de traducción
  • ejemplos de uso (varias frases con traducción)
  • etimología

Qué (quién) es linear relationship - definición

ANY STATISTICAL RELATIONSHIP, WHETHER CAUSAL OR NOT, BETWEEN TWO RANDOM VARIABLES OR BIVARIATE DATA
Statistical correlation; Association (statistics); Positive correlation; Correlations; Correlated; Correlation matrix; Correlate; Correlational research; Correlation (statistics); Correlation (in statistics); Linear correlation; Coorelation coeficient; Simple correlation; Corelation; Stratified analysis; Correlated variables; Direct correlation; Linear relationship; Sample correlation; Correlation & dependence; Correlational Design; Statistical association; Correlational data; Correlation structure; Correlation structures; Positively correlated; Correlation and dependence; Correlation matrices
  • [[Anscombe's quartet]]: four sets of data with the same correlation of 0.816
  • Several sets of (''x'', ''y'') points, with the [[Pearson correlation coefficient]] of ''x'' and ''y'' for each set. The correlation reflects the noisiness and direction of a linear relationship (top row), but not the slope of that relationship (middle), nor many aspects of nonlinear relationships (bottom). N.B.: the figure in the center has a slope of 0 but in that case, the correlation coefficient is undefined because the variance of ''Y'' is zero.
  • Example scatterplots of various datasets with various correlation coefficients.

linear map         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
<mathematics> (Or "linear transformation") A function from a vector space to a vector space which respects the additive and multiplicative structures of the two: that is, for any two vectors, u, v, in the source vector space and any scalar, k, in the field over which it is a vector space, a linear map f satisfies f(u+kv) = f(u) + kf(v). (1996-09-30)
Linear map         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism
In mathematics, and more specifically in linear algebra, a linear map (also called a linear mapping, linear transformation, vector space homomorphism, or in some contexts linear function) is a mapping V \to W between two vector spaces that preserves the operations of vector addition and scalar multiplication. The same names and the same definition are also used for the more general case of modules over a ring; see Module homomorphism.
linear transformation         
  • The function f:\R^2 \to \R^2 with f(x, y) = (2x, y) is a linear map. This function scales the x component of a vector by the factor 2.
  • The function f(x, y) = (2x, y) is additive: It doesn't matter whether vectors are first added and then mapped or whether they are mapped and finally added: f(\mathbf a + \mathbf b) = f(\mathbf a) + f(\mathbf b)
  • The function f(x, y) = (2x, y) is homogeneous: It doesn't matter whether a vector is first scaled and then mapped or first mapped and then scaled: f(\lambda \mathbf a) = \lambda f(\mathbf a)
MAPPING THAT PRESERVES THE OPERATIONS OF ADDITION AND SCALAR MULTIPLICATION
Linear operator; Linear mapping; Linear transformations; Linear operators; Linear transform; Linear maps; Linear isomorphism; Linear isomorphic; Linear Transformation; Linear Transformations; Linear Operator; Homogeneous linear transformation; User:The Uber Ninja/X3; Linear transformation; Bijective linear map; Nonlinear operator; Linear Schrödinger Operator; Vector space homomorphism; Vector space isomorphism; Linear extension of a function; Linear extension (linear algebra); Extend by linearity; Linear endomorphism

Wikipedia

Correlation

In statistics, correlation or dependence is any statistical relationship, whether causal or not, between two random variables or bivariate data. Although in the broadest sense, "correlation" may indicate any type of association, in statistics it usually refers to the degree to which a pair of variables are linearly related. Familiar examples of dependent phenomena include the correlation between the height of parents and their offspring, and the correlation between the price of a good and the quantity the consumers are willing to purchase, as it is depicted in the so-called demand curve.

Correlations are useful because they can indicate a predictive relationship that can be exploited in practice. For example, an electrical utility may produce less power on a mild day based on the correlation between electricity demand and weather. In this example, there is a causal relationship, because extreme weather causes people to use more electricity for heating or cooling. However, in general, the presence of a correlation is not sufficient to infer the presence of a causal relationship (i.e., correlation does not imply causation).

Formally, random variables are dependent if they do not satisfy a mathematical property of probabilistic independence. In informal parlance, correlation is synonymous with dependence. However, when used in a technical sense, correlation refers to any of several specific types of mathematical operations between the tested variables and their respective expected values. Essentially, correlation is the measure of how two or more variables are related to one another. There are several correlation coefficients, often denoted ρ {\displaystyle \rho } or r {\displaystyle r} , measuring the degree of correlation. The most common of these is the Pearson correlation coefficient, which is sensitive only to a linear relationship between two variables (which may be present even when one variable is a nonlinear function of the other). Other correlation coefficients – such as Spearman's rank correlation – have been developed to be more robust than Pearson's, that is, more sensitive to nonlinear relationships. Mutual information can also be applied to measure dependence between two variables.

Ejemplos de uso de linear relationship
1. The English language and the law have long assumed a linear relationship between heat and crime.
2. These data show that there is a direct, linear relationship between the neighborhood in which a child lives (which is the best indicator of his or her family‘s socioeconomic status) and his or her chances to get a matriculation certificate.